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Phase mixing, induced relaxation, and chaos in one-dimensional dynamical systems
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This paper investigates the mechanism of induced phase mixing, which leads to effective dissipation in
classical nonlinear dynamical systems with a fast modulation of the potential. The suggested model can be
applied to a classical dynamical description of cold atomic clouds in optical traps. We show that the parametric
nonadiabatic modulation of the laser intensity can provide a tool for dynamical control of the effective
relaxation in such systems.
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I. INTRODUCTION

This paper explores the effect of induced dissipation@1,2#
occurring in nonlinear dynamical systems subjected to
nonadiabatic time-dependent external field. A particular
plication of this effect is the coherent control of atomic sy
tems in off-resonant dipole optical traps. We show that
phase-space density, the effective relaxation rate, and the
ergy diffusion coefficients can be controlled by means of
nonstationary external potential.

Our previous paper@3# addressed the effect of increasin
the phase-space density~degeneracy degree! for an atomic
system in the nonadiabatic regime. In this regime, a spe
mechanism of relaxation of the average atomic distribut
has to be considered, since the dynamical time scale may
be much longer than the relaxation time. We showed tha
the nonadiabatic case the phase-space density can b
creased by the nonlinear effects of atomic breathing osc
tions due to the instability of such oscillations with respect
the initial conditions. This relaxation mechanism is related
the phenomenon known as ‘‘phase mixing,’’ and does
require atomic collisions. This effect opens up the possibi
of achieving fast nonadiabatic control of the onset of Bo
Einstein condensation in an atomic cloud loaded into an
tical trap.

The experiment of Ref.@4# reported the optical trapping
of a Bose-Einstein condensate. An important experime
observation in Ref.@4# was that condensation occurred in t
optical trap even when it was loaded with nonconden
magnetically trapped atoms. The authors suggested that
phenomenon is related to the effect of increasing the ph
space density of the atomic system with the adiabatic
changing shape of the confining potential@5#. We showed
that a similar effect of phase compression should also t
place for a parametric modulation of the anharmonic opt
potential@3#. One needs to take into account some relaxat
mechanism in order to circumvent the conservation of ph
volume imposed by the Liouville theorem. In Ref.@5#, it was
assumed that this relaxation mechanism was provided
atomic collisions.

In this paper, we show that an induced dissipation mec
nism should exist in nonlinear dynamical systems subjec
a suitable time-dependent external field. This effect is rela
to the recently experimentally observed@6# and theoretically
predicted@7# echo effect of squeezing oscillations in optic
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traps, occurring due to the partial reverse of dephasing
anharmonic potentials. The echo effect was achieved b
parametric modulation of the potential by sufficiently sho
pulses. As we show below, a complex time structure of
modulation of the potential may cause effective dissipat
in an atomic system depending on the parameters of
modulation.

We show that the relaxation rates and effective ene
diffusion coefficients associated with this mechanism can
controlled by adjusting the time profile of the laser intensi
One should note that the discussed effect should gene
occur in any dynamical system with a sufficiently low initi
dissipation.

II. MODEL

Following the experimental situation described earlier@4#,
we assume that after an initial cooling to temperatureT, the
atoms are transferred into an optical trap with a large det
ing, and that they are located near the minimum of the o
cal potential. The temperatureT is assumed to be higher tha
the Bose-Einstein condensation transition temperatureTc .
Since the detuning is large, the dissipation effects are sm
and will be disregarded. We consider the case of temp
turesT much larger than the energy\v0 of the atomic os-
cillations at the bottom of the potential. Consequently,
quantum dynamical effects are taken into account. On
other hand, the temperature should be low enough to ins
that the atoms do not escape from the potential well. T
effective potential is approximated as a one-dimensional
cillator with weak anharmonicity and time-dependent fr
quency given by

U~x,t !'
mv~ t !2x2

2
1

mh~ t !x4

4
, ~1!

with harmonic frequencyv(t), anharmonicity paramete
h(t), and atomic massm. Note that nonlinear dynamica
systems with dimensionalityD.1 can exhibit a chaotic be
havior even in time-independent fields. In the caseD51 and
with static external fields, the chaotic behavior is absent
to the complete integrability of one-dimensional~1D! dy-
namics systems@8#. However, chaotic behavior can occur
1D systems with time-dependent external potentials, also
ferred to as 3/2D dynamical systems@1#. The 3/2D situation
is a limiting case when the chaotic regime may exist
©2001 The American Physical Society17-1
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certain parameters of the dynamical system and a ce
time modulation of the potential. However, this case is a
lytically more tractable.

The time evolution of the distribution function is de
scribed by the Liouville equation

]r

]t
1

p

m

]r

]x
2~mv2x1mhx3!

]r

]p
50. ~2!

We introduce the phase space polar coordinatesI andQ by

p2

2m
5Iv sin2 Q,

~3!
mv2x2

2
1

mhx4

4
5Iv cos2 Q.

In terms of the coordinates given by Eq.~3!, the equations of
motion are

dQ

dt
5V~ I !2

1

2v

d

dt
@v~ t !#sin~2Q!,

~4!
dI

dt
5

1

v

d

dt
@v~ t !#I cos~2Q!,

In the limit of small anharmonicity the approximation

V~ I !'vS 11
3

4

h

mv2 I D
is valid.

In terms of the action-angle variables, the Liouville equ
tion takes the form@2,1#

i
]r

]t
5~ L̂01L̂1!r, ~5!

where the Hermitian operatorsL̂0 and L̂1 are given by

L̂05 iV~ I ,t !
]

]Q
,

L̂15~2 i !S ]V

]Q

]

]I
2

]V

]I

]

]Q D , ~6!

V~ I ,Q!5
1

2v~ t !

d

dt
„v~ t !…I sin~2Q!.

Following Ref.@2#, we expand the distribution function in
Fourier series in the angleQ. Due to the periodicity of the
distribution function with respect toQ, the expansion is
given by

r~ I ,Q,t !5 (
n52`

1`

rn~ I ,t !exp~ inQ!, ~7!
04621
in
-

-

with the Fourier componentsrn obeying equations of motion
in a form familiar from time-dependent perturbation theo
in quantum mechanics,

i
]rn

]t
5(

k
^kuL̂01L̂1un&rk , ~8!

where the matrix elements of the Liouville operator are giv
by ^kuL̂un&5(1/2p)*0

2pdQ exp(2ikQ)L̂ exp(inQ). Expand-
ing the non-adiabatic contribution as

V~ I ,Q,t !5 (
n52`

1`

Vn~ I ,t !exp~ inQ!, ~9!

we obtain the matrix elements of the Liouville operator
the form

^nuL̂0uk&5Vndkn ,
~10!

^nuL̂1uk&5~n2k!Vn2k~ I !
]

]I
2k

]Vn2k~ I !

]I
.

Note that the matrix elements of the Liouville operator w
respect to the angle variables are still operators with res
to the action variables@1#. Introducing the new variablescn
as

rn~ I ,t !5cn~ I ,t !exp~ inF!,
~11!

F~ t !5E
0

t

dt8V~ t8!,

the equations of motion given by Eq.~8! reduce to

i
]cn

]t
5 (

kÞn
^kuL̂1un&ck exp@2 i ~n2k!F#. ~12!

Substituting the expression for the nonadiabatic perturba
operatorV from Eq. ~6! into Eq. ~10!, we obtain

^nuL̂1un12&52V2~ I !
]

]I
2~n12!

]V2~ I !

]I
,

~13!

^nuL̂1un22&522V2* ~ I !
]

]I
2~n22!

]V2* ~ I !

]I
,

with V25V22* 52 i @1/4v(t)#(d/dt)v(t). Making use of
Eqs. ~12! and ~13!, we obtain a set of dynamical equation
for the distribution function with appropriate initial cond
tions.

III. INDUCED RELAXATION IN 3 Õ2D DYNAMICAL
SYSTEMS

We analyze the nonequilibrium energy distribution in t
case when fast squeezing oscillations are present. As sh
in Refs. @3,5#, the average phase-space volume is not c
served for adiabatic modulation of the optical potential. T
effect is due to relaxation which does not have to be sp
7-2
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fied in this regime. In the nonadiabatic regime, a simi
effect is expected, but in this case a specific relaxat
mechanism must be present. We consider a collisionless
of atoms in an anharmonic optical trap with a fast parame
modulation of the optical potential, and show that there
ists a relaxation mechanism arising from instabilities of
atomic trajectories with respect to the initial conditions. Su
a mechanism is related to phase mixing@1#.

As shown above, in a potential with quartic anharmon
ity the Liouville equation for the nonequilibrium distributio
function can be presented in action-angle variables in
form of coupled dynamical equations for the different ord
Fourier components of the distribution function or coh
ences. In order to solve the equations of motion, the infin
chain given by Eq.~12! has to be broken at some point. Th
is analogous to the procedure of breaking the high-order
relations which is necessary to obtain closed-form kine
equations@2#.

We are interested in the time evolution of the coheren
averaged over a sufficiently long time interval. Due to t
nonadiabatic terms, the action acquires small but rapidly
cillating contributions asI 5^I &1dI . Correspondingly, the
phase also acquires such contributions asF5^F&1dF.
This leads to a dephasing and decay of the high-order co
lations averaged over the ensemble. The dephasing o
nates from the rapidly oscillating phases on the right-ha
side of Eq.~11!, which lead to a decay after averaging as

exp@ in~^F&1dF!#&'K expS inE
0

t

dt8v@11«„^I &

1dI ~ t8!…# D L , ~14!

where «53/4(h/mv2)[const, and the averaging is pe
formed over fast fluctuations of the action. It is known@1#
that if the distribution in phase space is sufficiently smoo
the correlationŝ dI (t)dI (t1t)& decay rapidly int due to
the dephasing. This condition is naturally satisfied in o
quasiequilibrium system@3,7#. In the limit t@tc , wheretc
is the typical correlation time, the correlators can be appro
mated as^dI (t)dI (t8)&'^dI 2&tcd(t2t8). Note that the
dephasing can be partially reversed by means of a sh
pulse modulation of the potential, leading to an echo eff
@7#. As we show below, a more complex time dependence
the modulation leads to an effective dissipation. After av
aging over a time interval greater than the correlation tim
we obtain

K expF ineE
0

t

dt8dI ~ t8!G L
'expF2

1

2
n2«2E

0

t

dt8E
0

t8
dt9^dI ~ t8!dI ~ t9!&G , ~15!

which leads to
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^exp@ inF#&'exp@ in^F&#expS 2
t

t r
D , ~16!

with t r
2151/2tcn

2e2 ^dI 2&. To estimate a lower bound o
the relaxation time, we assume thatt r5tc , and obtain

t r
215

1

&
n«A^dI 2&. ~17!

The estimatêdI 2&'(1/v2)^dE2&5T2/v2 yields

r r;
1

v

1

nK
, ~18!

whereK5hT/mv4, according to our previous results@3#.
In order to simplify the calculations, we will break thi

chain at the fourth order Fourier component or coherency
Eq. ~12!. Then we obtain

i
]c0

]t
52

]

]I
~2U2* c222U2c2* !,

i
]c2

]t
52U2

]

]I
c012U2*

]

]I
c424

]

]I
~U2* c4!, ~19!

i
]c4

]t
'4U2

]

]I
c222

]

]I
~U2c2!,

whereUn2k5Vnk exp@2i(n2k)F#. In the last expression o
Eqs. ~19!, we have neglected the coupling of the fourth c
herency to higher-order coherences, and thus obtaine
closed set of equations for the first four coherences. Note
the truncation procedure is standard@2#, and is necessary in
order to obtain a closed set of equations for the lower co
elators. Essentially, it is justified by the assumption th
higher-order correlations decay faster than the lower-or
ones. Expressingc4 in terms of c2 and substituting back
into Eq. ~19!, we obtain a closed set of equations forc0 and
c2 in the forms

]c0

]t
5

]

]I XD0~ I !
]

]I
c0C,

~20!
]c2

]t
522iU 2

]

]I
c01

]

]I XD2~ I !
]

]I
c2C2G2c2 ,

where

D058t r uU2u2,

D254t r uU2u2, ~21!

G258t rU]U2

]I U2

.

Note that the relaxation timet r enters Eq.~21! due to the
exponential decay of the phase given by Eq.~20!. From Eq.
~20!, it follows that the second-order coherencyc2(t) decays
with a rateG2 given by Eq.~21!. The higher-order coher
7-3
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ences decay even faster, since they depend on higher po
of the relative phase, as shown above. Due to this beha
the angular dependence of the distribution function deca
and the average distribution function becomes only a fu
tion of energy. This is analogous to what happens as a re
of virtually any relaxation mechanism in the adiabatic
gime ~but for a nonaveraged distribution!. Therefore, the av-
erage phase-space distribution experiences relaxation d
the non-adiabatic phase-mixing effects considered above

The relaxation rate and the effective diffusion coefficie
for zero-order coherency are determined by the tim
dependent external potential acting on the dynamical sys
Therefore, the relaxation process depends on the time pr
of the external potential acting on the dynamical system,
can be effectively manipulated by changing this time profi
-
e

s,
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IV. CONCLUSION

This paper investigated the effect of induced dissipat
in nonlinear dynamical systems subjected to nonadiab
time-dependent external fields. Applications of interest mi
be to coherent control of atomic systems in off-resonant
pole optical traps. This work showed that the phase-sp
density, the effective relaxation rate, and the energy dif
sion coefficients can be controlled@9# by means of a nonsta
tionary external potential.
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